Research Article
Aguilar-Ariza, A., Ishii, M., Miyazaki, T., Saito, A., Khaing, H.P., Phoo, H.W., Kondo, T., Fujiwara, T., Guo, W., Kamiya, T. 2023. UAV-based individual Chinese cabbage weight prediction using multi-temporal data. Scientific Reports 13(1): 20122. https://doi.org/10.1038/s41598-023-47431-y
10.1038/s41598-023-47431-y37978327PMC10656565Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., Moran, M.S. (2000, July). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the fifth international conference on precision agriculture, Bloomington, MN, USA (Vol. 1619, No. 6).
Bisbis, M.B., Gruda, N., Blanke, M. 2018. Potential impacts of climate change on vegetable production and product quality-A review. Journal of Cleaner Production, 170: 1602-1620. https://doi.org/10.1016/j.jclepro.2017.09.224
10.1016/j.jclepro.2017.09.224Cohen, I., Huang, Y., Chen, J., Benesty, J. 2009. Pearson correlation coefficient. Noise reduction in speech processing pp. 1-4. https://doi.org/10.1007/978-3-642-00296-0_5
10.1007/978-3-642-00296-0_5Ghini, R., Bettiol, W., Hamada, E. 2011. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant pathology 60(1): 122-132. https://doi.org/10.1111/j.1365-3059.2010.02403.x
10.1111/j.1365-3059.2010.02403.xHaboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., Dextraze, L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment 81(2-3): 416-426. https://doi.org/10.1016/S0034-4257(02)00018-4
10.1016/S0034-4257(02)00018-4Hasegawa, T., Wakatsuki, H., Ju, H., Vyas, S., Nelson, G.C., Farrell, A., Deryng, D., Meza, F., Makowski, D. 2022. A global dataset for the projected impacts of climate change on four major crops. Scientific data 9(1): 58. https://doi.org/10.1038/s41597-022-01150-7
10.1038/s41597-022-01150-735173186PMC8850443Huete, A., Justice, C., Van Leeuwen, W. 1999. MODIS vegetation index (MOD13). Algorithm theoretical basis document 3(213): 295-309.
Hussain, S., Ulhassan, Z., Brestic, M., Zivcak, M., Zhou, W., Allakhverdiev, S.I., Safdar, M.E., Yang, W., Liu, W. 2021. Photosynthesis research under climate change. Photosynthesis Research 150: 5-19. https://doi.org/10.1007/s11120-021-00861-z
10.1007/s11120-021-00861-z34235625Ryu, J.-H., Oh, D., Cho, J. 2021. Simple method for extracting the seasonal signals of photochemical reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor. Journal of Integrative Agriculture 20(7): 1969-1986. https://doi.org/10.1016/S2095-3119(20)63410-4
10.1016/S2095-3119(20)63410-4Jägermeyr, J., Müller, C., Ruane, A.C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J.R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A.K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., Liu, W., Mialyk, O., Minoli, S., Moyer, E.J., Okada, M., Phillips, M., Porter, C., Rabin, S.S., Scheer, C., Schneider, J.M., Schyns, J.F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., Rosenzweig, C. 2021. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food 2(11): 873-885. https://doi.org/10.1038/s43016-021-00400-y
10.1038/s43016-021-00400-y37117503Jang, S.H., Jeong, J.H., Lee, D.Y., Lee, S.K., Shin, T.H., Cho, J.G., Kang, Y.S., Ryu, C.S. 2024. Estimation of chlorophyll content in apple 'Hongro' based hyperspectral imaging. Korean Journal of Agricultural and Forest Meteorology 26(4): 283-294. [in Korean]
Jayathilaka, P.M.S., Soni, P., Perret, S.R., Jayasuriya, H.P.W., Salokhe, V.M. 2012. Spatial assessment of climate change effects on crop suitability for major plantation crops in Sri Lanka. Regional environmental change 12: 55-68. https://doi.org/10.1007/s10113-011-0235-8
10.1007/s10113-011-0235-8Karunathilake, E.M.B.M., Le, A.T., Heo, S., Chung, Y.S., Mansoor, S. 2023. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 13(8): 1593. https://doi.org/10.3390/agriculture13081593
10.3390/agriculture13081593Kuhn, M., Johnson, K. 2013. Nonlinear Regression Models. In Applied Predictive Modeling (pp. 141-171). Springer New York. https://doi.org/10.1007/978-1-4614-6849-3_7
10.1007/978-1-4614-6849-3_7Lee, D.-H., Park, J.-H. 2024. Development of a UAS-based multi-sensor deep learning model for predicting napa cabbage fresh weight and determining optimal harvest time. Remote Sensing 16(18): 3455. https://doi.org/10.3390/rs16183455
10.3390/rs16183455Lee, H., Wang, J., Leblon, B. 2020. Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sensing 12(13): 2071. https://doi.org/10.3390/rs12132071
10.3390/rs12132071Lee, S.H. Kim, S.Y. 2008. Impacts of climate change on highland agriculture over taebackmountainous region. THE GEOGRAPHICAL JOURNAL OF KOREA 42(4): 621-633. [in Korean]
Lobell, D.B. 2014. Climate change adaptation in crop production: Beware of illusions. Global Food Security 3(2): 72-76. https://doi.org/10.1016/j.gfs.2014.05.002
10.1016/j.gfs.2014.05.002Marcial-Pablo, M.D.J., Gonzalez-Sanchez, A., Jimenez-Jimenez, S.I., Ontiveros-Capurata, R.E., Ojeda-Bustamante, W. 2019. Estimation of vegetation fraction using RGB and multispectral images from UAV. International journal of remote sensing 40(2): 420-438. https://doi.org/10.1080/01431161.2018.1528017
10.1080/01431161.2018.1528017Marjanović, M., Kovačević, M., Bajat, B., Voženílek, V. 2011. Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology 123(3): 225-234. https://doi.org/10.1016/j.enggeo.2011.09.006
10.1016/j.enggeo.2011.09.006Moriondo, M., Giannakopoulos, C., Bindi, M. 2011. Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic change 104(3): 679-701. https://doi.org/10.1007/s10584-010-9871-0
10.1007/s10584-010-9871-0Naji, T.A. 2018. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. Journal of physics: conference series. https://doi.org/10.1088/1742-6596/1003/1/012083
10.1088/1742-6596/1003/1/012083Park, K.W., Kwon, O.S., Kim, K.S. 2015. The regional impacts of climate change on Korean agriculture: A positive mathematical programming approach. The Korean Journal of Economic Studies 63(1): 61-91. [in Korean]
Pathak, H.S., Brown, P., Best, T. 2019. A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture 20: 1292-1316. https://doi.org/10.1007/s11119-019-09653-x
10.1007/s11119-019-09653-xPeksen, E. 2007. Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae 113(4): 322-328. https://doi.org/10.1016/j.scienta.2007.04.003
10.1016/j.scienta.2007.04.003Ranstam, J., Cook, J.A. 2018. LASSO regression. British Journal of Surgery 105(10): 1348-1348. https://doi.org/10.1002/bjs.10895
10.1002/bjs.10895Rural Development Administration. 2025. https://www.nihhs.go.kr/farmer/statistics/statistics.do?t_cd=0202
Shammi, S.A., Huang, Y., Feng, G., Tewolde, H., Zhang, X., Jenkins, J., Shankle, M. 2024. Application of UAV multispectral imaging to monitor soybean growth with yield prediction through machine learning. Agronomy 14(4): 672. https://doi.org/10.3390/agronomy14040672
10.3390/agronomy14040672Sripada, R.P., Heiniger, R.W., White, J.G., Meijer, A.D. 2006. Aerial color infrared photography for determining early in‐season nitrogen requirements in corn. Agronomy Journal 98(4): 968-977. https://doi.org/10.2134/agronj2005.0200
10.2134/agronj2005.0200Štroner, M., Urban, R., Suk, T. 2023. Filtering green vegetation out from colored point clouds of Rocky terrains based on various vegetation indices: comparison of simple statistical methods, support vector machine, and neural network. Remote Sensing 15(13): 3254. https://doi.org/10.3390/rs15133254
10.3390/rs15133254Tanabe, R., Matsui, T., Tanaka, T.S. 2023. Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery. Field Crops Research 291: 108786. https://doi.org/10.1016/j.fcr.2022.108786
10.1016/j.fcr.2022.108786Ullah, A., Bano, A., Khan, N. 2021. Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems 5: 618092. https://doi.org/10.3389/fsufs.2021.618092
10.3389/fsufs.2021.618092Wong, T.-T., Yang, N.-Y. 2017. Dependency analysis of accuracy estimates in k-fold cross validation. IEEE Transactions on Knowledge and Data Engineering 29(11): 2417-2427. https://doi.org/10.1109/TKDE.2017.2740926
10.1109/TKDE.2017.2740926Xue, J., Su, B. 2017. Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors 2017(1): 1353691. https://doi.org/10.1155/2017/1353691
10.1155/2017/1353691Yaghobi, S., Heidarizadi, Z., Mirzapour, H. 2019. Comparing NDVI and RVI for forest density estimation and their relationships with rainfall (Case study: Malekshahi, Ilam Province). Environmental Resources Research 7(2): 117-128.
Yang, J., Rahardja, S., Fränti, P. (2019, December). Outlier detection: How to threshold outlier scores?. In Proceedings of the international conference on artificial intelligence, information processing and cloud computing (pp. 1-6). https://doi.org/10.1145/3371425.3371427
10.1145/3371425.3371427Yang, J.Y., Jeong S.Y., Lee H.S. 2022. Based on the predictive model and Visualization-regression analysis according to the resulting variables using R. Journal of Health Informatics and Statistics 47: 21-30. [in Korean] https://doi.org/10.21032/jhis.2022.47.S2.S21
10.21032/jhis.2022.47.S2.S21Yasin, A., Amin, M., Qasim, M., Muse, A.H., Soliman, A.B. 2022. More on the ridge parameter estimators for the Gamma ridge regression model: Simulation and applications. Mathematical Problems in Engineering 2022(1): 6769421. https://doi.org/10.1155/2022/6769421
10.1155/2022/6769421Yohanani, E., Frisch, A., Lukyanov, V., Cohen, S., Teitel, M., Tanny, J. 2022. Estimating evapotranspiration of screenhouse banana plantations using artificial neural network and multiple linear regression models. Water 14(7): 1130. https://doi.org/10.3390/w14071130
10.3390/w14071130Zhou, Z., Majeed, Y., Naranjo, G.D., Gambacorta, E.M. 2021. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture 182: 106019. https://doi.org/10.1016/j.compag.2021.106019
10.1016/j.compag.2021.106019- Publisher :Korean Society of Precision Agriculture
- Publisher(Ko) :한국정밀농업학회
- Journal Title :Precision Agriculture Science and Technology
- Journal Title(Ko) :정밀농업과학기술
- Volume : 7
- No :1
- Pages :56-67
- Received Date : 2025-03-26
- Revised Date : 2025-04-02
- Accepted Date : 2025-04-02
- DOI :https://doi.org/10.22765/pastj.20250005