All Issue

2025 Vol.7, Issue 1

Research Article

31 March 2025. pp. 1-16
Abstract
References
1

Ahmed, S., Reza, M.N., Karim, M.R., Jin, H., Kim, H., Chung, S.-O. 2025. Abnormal operation detection of automated orchard irrigation system actuators by power consumption level. Sensors 25(2): 331. https://doi.org/10.3390/s25020331

10.3390/s2502033139860701PMC11768651
2

Ahmed, S., Reza, M.N., Samsuzzaman, Karim, M.R., Jin, H., Kim, H., Chung, S.-O. 2025. Vegetation effects on lora-based wireless sensor communication for remote monitoring of automatic orchard irrigation status. IoT 6(1): 2. https://doi.org/10.3390/iot6010002

10.3390/iot6010002
3

Azizjon, M., Jumabek, A., Kim, W. 2020. 1D CNN-based network intrusion detection with normalization on imbalanced data. Paper presented at the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 218-224. https://doi.org/10.1109/ICAIIC48513.2020.9064976

10.1109/ICAIIC48513.2020.9064976
4

Berrar, D. 2019. Cross-validation. In R. Ranganathan, M. Gribskov, & K. Nakai (Eds.), Encyclopedia of Bioinformatics and Computational Biology, 542-545. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

10.1016/B978-0-12-809633-8.20349-X
5

Boulent, J., Foucher, S., Théau, J., St-Charles, P.-L. 2019. Convolutional neural networks for the automatic identification of plant diseases. Frontiers in Plant Science 10: 941. https://doi.org/10.3389/fpls.2019.00941

10.3389/fpls.2019.0094131396250PMC6664047
6

Galvan, J.P.D., Adorio, M.D., Simon, M.R.A.C., Razote, R.P. 2021. Growth and yield performance of pechay (Brassica napus L.) in hydroponics system as influenced by magnetic field. International Journal of Advanced Agricultural Research 19: 1-8. https://innspub.net/growth-and-yield-performance-of-pechay-brassica-napus-l-in-hydroponics-system-as-influenced-by-magnetic-field/ (accessed on 25 February 2025).

7

Hochreiter, S., Schmidhuber, J. 1997. Long short-term memory. Neural Computation 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

10.1162/neco.1997.9.8.17359377276
8

Islam, S., Reza, N., Ahmed, S., Kabir, S. N., Chung, S.-O., Kim, H. 2023. Short-range sensing for fruit tree water stress detection and monitoring in orchards: A review. Korean Journal of Agricultural Science 50(4): 883-902. https://doi.org/10.7744/kjoas.500424

10.7744/kjoas.500424
9

Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., Wang, J. 2020. A review of data-driven approaches for prediction and classification of agricultural productivity using big data and machine learning techniques. Applied Sciences 10(3): 734. https://doi.org/10.1016/j.rser.2017.09.108

10

Kamilaris, A., Prenafeta-Boldú, F.X. 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147: 70-90. https://doi.org/10.1016/j.compag.2018.02.016

10.1016/j.compag.2018.02.016
11

Kim, T. H., Lee, K. Y., Ali, M. R., Reza, M. N., Chung, S.-O., Kang, N. R. 2023. PID control for greenhouse climate regulation: A review. Precision Agriculture Science and Technology 5(2): 93-106. https://doi.org/10.12972/pastj.20230008

10.12972/pastj.20230008
12

Kingma, D.P., Ba, J. 2014. Adam: A method for stochastic optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980

13

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J. 2021. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing 151: 107398. https://doi.org/10.1016/j.ymssp.2020.107398

10.1016/j.ymssp.2020.107398
14

Klerkx, L., Jakku, E., Labarthe, P. 2019. A review of social science perspectives on digital agriculture, smart farming, and agricultural innovation systems. Agricultural Systems 174: 102-111. https://doi.org/10.1016/j.njas.2019.100315

10.1016/j.njas.2019.100315
15

Lee, S. W., Reza, M. N., Chung, S.-O., An, H.-S., Lee, Y. R., Kim, S. S., Seo, H. W., Cheon, C. U. 2023. Application of expert system for smart livestock production management: A review. Precision Agriculture Science and Technology 5(1): 15-28. https://doi.org/10.12972/pastj.20230002

10.12972/pastj.20230002
16

Lim, B., Arık, S.Ö., Loeff, N., Pfister, T. 2021. Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of Forecasting 37(4): 1748-1764. https://doi.org/10.1016/j.ijforecast.2021.03.012

10.1016/j.ijforecast.2021.03.012
17

Rehman, T.U., Mahmud, M.S., Chang, Y.K., Jin, J., Shin, J. 2019. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture 156: 585-605. https://doi.org/10.1016/j.compag.2018.12.006

10.1016/j.compag.2018.12.006
18

Seo, Y.W., Baek, C.R. 2024. Comparison of time series CV methods for deep learning. Korean Data and Information Science Society 35(3): 397-410. https://doi.org/10.7465/jkdi.2024.35.3.397

10.7465/jkdi.2024.35.3.397
19

Shi, H., Xu, M., Li, R. 2017. Deep learning for household load forecasting: A novel pooling deep RNN. IEEE Transactions on Smart Grid 9(5): 5271-5280. https://doi.org/10.1109/TSG.2017.2686012

10.1109/TSG.2017.2686012
20

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1): 1929-1958. http://jmlr.org/papers/v15/srivastava14a.html

21

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. 2017. Attention is all you need. Advances in Neural Information Processing Systems 30: 5998-6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html(accessed on 20 February 2025).

22

Wang, Y., Liao, W., Chang, Y. 2018. Gated recurrent unit network-based short-term photovoltaic forecasting. Energies 11(8): 2163. https://doi.org/10.3390/en11082163

10.3390/en11082163
23

Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.J. 2017. Big data in smart farming. Agricultural Systems 153: 69-80. https://doi.org/10.1016/j.agsy.2017.01.023

10.1016/j.agsy.2017.01.023
24

You, J., Li, X., Low, M., Lobell, D., Ermon, S. 2017. Deep Gaussian process for crop yield prediction based on remote sensing data. Proceedings of the AAAI Conference on Artificial Intelligence 31(1): 4559-4566. https://doi.org/10.1609/aaai.v31i1.11172

10.1609/aaai.v31i1.11172
25

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W. 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35(12): 11106-11115. https://doi.org/10.48550/arXiv.2012.07436

10.1609/aaai.v35i12.17325
Information
  • Publisher :Korean Society of Precision Agriculture
  • Publisher(Ko) :한국정밀농업학회
  • Journal Title :Precision Agriculture Science and Technology
  • Journal Title(Ko) :정밀농업과학기술
  • Volume : 7
  • No :1
  • Pages :1-16
  • Received Date : 2025-03-10
  • Revised Date : 2025-03-27
  • Accepted Date : 2025-03-28