Research Article
Ahmed, S., Reza, M.N., Karim, M.R., Jin, H., Kim, H., Chung, S.-O. 2025. Abnormal operation detection of automated orchard irrigation system actuators by power consumption level. Sensors 25(2): 331. https://doi.org/10.3390/s25020331
10.3390/s2502033139860701PMC11768651Ahmed, S., Reza, M.N., Samsuzzaman, Karim, M.R., Jin, H., Kim, H., Chung, S.-O. 2025. Vegetation effects on lora-based wireless sensor communication for remote monitoring of automatic orchard irrigation status. IoT 6(1): 2. https://doi.org/10.3390/iot6010002
10.3390/iot6010002Azizjon, M., Jumabek, A., Kim, W. 2020. 1D CNN-based network intrusion detection with normalization on imbalanced data. Paper presented at the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 218-224. https://doi.org/10.1109/ICAIIC48513.2020.9064976
10.1109/ICAIIC48513.2020.9064976Berrar, D. 2019. Cross-validation. In R. Ranganathan, M. Gribskov, & K. Nakai (Eds.), Encyclopedia of Bioinformatics and Computational Biology, 542-545. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
10.1016/B978-0-12-809633-8.20349-XBoulent, J., Foucher, S., Théau, J., St-Charles, P.-L. 2019. Convolutional neural networks for the automatic identification of plant diseases. Frontiers in Plant Science 10: 941. https://doi.org/10.3389/fpls.2019.00941
10.3389/fpls.2019.0094131396250PMC6664047Galvan, J.P.D., Adorio, M.D., Simon, M.R.A.C., Razote, R.P. 2021. Growth and yield performance of pechay (Brassica napus L.) in hydroponics system as influenced by magnetic field. International Journal of Advanced Agricultural Research 19: 1-8. https://innspub.net/growth-and-yield-performance-of-pechay-brassica-napus-l-in-hydroponics-system-as-influenced-by-magnetic-field/ (accessed on 25 February 2025).
Hochreiter, S., Schmidhuber, J. 1997. Long short-term memory. Neural Computation 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
10.1162/neco.1997.9.8.17359377276Islam, S., Reza, N., Ahmed, S., Kabir, S. N., Chung, S.-O., Kim, H. 2023. Short-range sensing for fruit tree water stress detection and monitoring in orchards: A review. Korean Journal of Agricultural Science 50(4): 883-902. https://doi.org/10.7744/kjoas.500424
10.7744/kjoas.500424Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., Wang, J. 2020. A review of data-driven approaches for prediction and classification of agricultural productivity using big data and machine learning techniques. Applied Sciences 10(3): 734. https://doi.org/10.1016/j.rser.2017.09.108
Kamilaris, A., Prenafeta-Boldú, F.X. 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147: 70-90. https://doi.org/10.1016/j.compag.2018.02.016
10.1016/j.compag.2018.02.016Kim, T. H., Lee, K. Y., Ali, M. R., Reza, M. N., Chung, S.-O., Kang, N. R. 2023. PID control for greenhouse climate regulation: A review. Precision Agriculture Science and Technology 5(2): 93-106. https://doi.org/10.12972/pastj.20230008
10.12972/pastj.20230008Kingma, D.P., Ba, J. 2014. Adam: A method for stochastic optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J. 2021. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing 151: 107398. https://doi.org/10.1016/j.ymssp.2020.107398
10.1016/j.ymssp.2020.107398Klerkx, L., Jakku, E., Labarthe, P. 2019. A review of social science perspectives on digital agriculture, smart farming, and agricultural innovation systems. Agricultural Systems 174: 102-111. https://doi.org/10.1016/j.njas.2019.100315
10.1016/j.njas.2019.100315Lee, S. W., Reza, M. N., Chung, S.-O., An, H.-S., Lee, Y. R., Kim, S. S., Seo, H. W., Cheon, C. U. 2023. Application of expert system for smart livestock production management: A review. Precision Agriculture Science and Technology 5(1): 15-28. https://doi.org/10.12972/pastj.20230002
10.12972/pastj.20230002Lim, B., Arık, S.Ö., Loeff, N., Pfister, T. 2021. Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of Forecasting 37(4): 1748-1764. https://doi.org/10.1016/j.ijforecast.2021.03.012
10.1016/j.ijforecast.2021.03.012Rehman, T.U., Mahmud, M.S., Chang, Y.K., Jin, J., Shin, J. 2019. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture 156: 585-605. https://doi.org/10.1016/j.compag.2018.12.006
10.1016/j.compag.2018.12.006Seo, Y.W., Baek, C.R. 2024. Comparison of time series CV methods for deep learning. Korean Data and Information Science Society 35(3): 397-410. https://doi.org/10.7465/jkdi.2024.35.3.397
10.7465/jkdi.2024.35.3.397Shi, H., Xu, M., Li, R. 2017. Deep learning for household load forecasting: A novel pooling deep RNN. IEEE Transactions on Smart Grid 9(5): 5271-5280. https://doi.org/10.1109/TSG.2017.2686012
10.1109/TSG.2017.2686012Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1): 1929-1958. http://jmlr.org/papers/v15/srivastava14a.html
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. 2017. Attention is all you need. Advances in Neural Information Processing Systems 30: 5998-6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html(accessed on 20 February 2025).
Wang, Y., Liao, W., Chang, Y. 2018. Gated recurrent unit network-based short-term photovoltaic forecasting. Energies 11(8): 2163. https://doi.org/10.3390/en11082163
10.3390/en11082163Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.J. 2017. Big data in smart farming. Agricultural Systems 153: 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
10.1016/j.agsy.2017.01.023You, J., Li, X., Low, M., Lobell, D., Ermon, S. 2017. Deep Gaussian process for crop yield prediction based on remote sensing data. Proceedings of the AAAI Conference on Artificial Intelligence 31(1): 4559-4566. https://doi.org/10.1609/aaai.v31i1.11172
10.1609/aaai.v31i1.11172Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W. 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35(12): 11106-11115. https://doi.org/10.48550/arXiv.2012.07436
10.1609/aaai.v35i12.17325- Publisher :Korean Society of Precision Agriculture
- Publisher(Ko) :한국정밀농업학회
- Journal Title :Precision Agriculture Science and Technology
- Journal Title(Ko) :정밀농업과학기술
- Volume : 7
- No :1
- Pages :1-16
- Received Date : 2025-03-10
- Revised Date : 2025-03-27
- Accepted Date : 2025-03-28
- DOI :https://doi.org/10.22765/pastj.20250001