All Issue

2025 Vol.7, Issue 1 Preview Page

Review Article

31 March 2025. pp. 28-46
Abstract
References
1

Abdallah, B., Khriji, S., Chéour, R., Lahoud, C., Moessner, K., Kanoun, O. 2024. Improving the reliability of long-range communication against interference for non-line-of-sight conditions in industrial Internet of Things applications. Applied Sciences 14(2): 868. https://doi.org/10.3390/app14020868

10.3390/app14020868
2

Adla, S., Rai, N.K., Karumanchi, S.H., Tripathi, S., Disse, M., Pande, S. 2020. Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors 20(2): 20020363. https://doi.org/10.3390/s20020363

10.3390/s2002036331936425PMC7014303
3

Ahmed, H.A., Tong, Y.X., Yang, Q.C., Al-Faraj, A.A., Abdel-Ghany, A.M. 2019. Spatial distribution of air temperature and relative humidity in the greenhouse as affected by external shading in arid climates. Journal of Integrative Agriculture 18(12): 2869-2882. https://doi.org/10.1016/S2095-3119(19)62598-0

10.1016/S2095-3119(19)62598-0
4

Ahmed, S., Reza, M.N., Samsuzzaman, Karim, M.R., Jin, H., Kim, H., Chung, S.O. 2024. Vegetation effects on LoRa-based wireless sensor communication for remote monitoring of automatic orchard irrigation status. IoT 6(1): 2. https://doi.org/10.3390/iot6010002

10.3390/iot6010002
5

Ahmed, Z., Gui, D., Murtaza, G., Yunfei, L., Ali, S. 2023. An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy 13(8): 1-25. https://doi.org/10.3390/agronomy13082113

10.3390/agronomy13082113
6

Al-Haija, Q.A., Samad, M.D. 2020. Efficient LuxMeter design using TM4C123 microcontroller with motion detection application. Proceedings of the 11th International Conference on Information and Communication Systems (ICICS 2020). pp. 331-336. https://doi.org/10.1109/ICICS49469.2020.239523

10.1109/ICICS49469.2020.239523
7

Aldhaheri, L., Alshehhi, N., Manzil, I.I.J., Khalil, R.A., Javaid, S., Saeed, N., Alouini, M.S. 2024. LoRa communication for agriculture 4.0: Opportunities, challenges, and future directions. IEEE Internet of Things Journal 12(2): 1380-1407. https://doi.org/10.1109/JIOT.2024.3486369

10.1109/JIOT.2024.3486369
8

Ali, M., Gunawan, A.A.N., Prasetya, D.A., Ibrahim, M.Z.B., Diyasa, I.G.S.M. 2024. Impact of smart greenhouse using IoT for enhanced quality of plant growth. International Journal of Robotics and Control Systems 4(3): 1473-1489. https://doi.org/10.31763/ijrcs.v4i3.1277

10.31763/ijrcs.v4i3.1277
9

Alumfareh, M.F., Humayun, M., Ahmad, Z., Khan, A. 2024. An intelligent LoRaWAN-based IoT device for monitoring and control solutions in smart farming through anomaly detection integrated with unsupervised machine learning. IEEE Access 12: 119072- 119086. https://doi.org/10.1109/ACCESS.2024.3450587

10.1109/ACCESS.2024.3450587
10

Arshad, J., Aziz, M., Al-Huqail, A.A., Zaman, M.H.U., Husnain, M., Rehman, A.U., Shafiq, M. 2022. Implementation of a LoRaWAN-based smart agriculture decision support system for optimum crop yield. Sustainability 14(2): 1-20. https://doi.org/10.3390/su14020827

10.3390/su14020827
11

Asteriou, V, Kantelis K, Beletsioti GA, Valkanis A, Nicopolitidis P, Papadimitriou G. 2024. Adaptive Spatial Scheduling for Event Traffic in LoRaWAN Networks. Sensors 24(7): 2222. https://doi.org/10.3390/s24072222

10.3390/s2407222238610433PMC11014082
12

Bassous. N.J., Rodriguez, A.C., Leal, C.I.L., Jung, H.Y., Lee, C.K., Joo, S., Kim, S., Yun, C., Hahm, M.G., Ahn, M., Kim, S., Oh, Y.S., Shin, S.R. 2024. Significance of various sensing mechanisms for detecting local and atmospheric greenhouse gases: A review. Advanced Sensor Research 3(2): 1-32. https://doi.org/10.1002/adsr.202470007

10.1002/adsr.202470007
13

Bersani, C., Ruggiero, C., Sacile, R., Soussi, A., Zero, E. 2022. Internet of Things approaches for monitoring and control of smart greenhouses in Industry 4.0. Energies 15(10):3834. https://doi.org/10.3390/en15103834

10.3390/en15103834
14

Bicamumakuba, E., Habineza, E., Lee, K., Chung, S. 2024. Sensor technologies for remote monitoring of automated orchard irrigation: A review. Precision Agriculture Science and Technology 6(2): 81-95.

15

Bierer, A.M., Tang, L. 2024. Drought responses in three apple cultivars using an autonomous sensor-based irrigation system. HortScience 59(4): 431-441. https://doi.org/10.21273/HORTSCI17520-23

10.21273/HORTSCI17520-23
16

Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F. 2011. Energy efficiency in the future Internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Communications Surveys and Tutorials 13(2): 223-244. https://doi.org/10.1109/SURV.2011.071410.00073

10.1109/SURV.2011.071410.00073
17

Buckley, D.J., Black, N.C.G., Castanon, E.G., Melios, C., Hardman, M., Kazakova, O. 2020. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Materials 7(3): 032002. https://doi.org/10.1088/2053-1583/ab7bc5

10.1088/2053-1583/ab7bc5
18

Chaudhary, S., Devi, P., HanumanthaRao, B., Jha, U.C., Sharma, K.D., Prasad, P.V.V., Kumar, S., Siddique, K.H.M., Nayyar, H. 2022. Physiological and molecular approaches for developing thermotolerance in vegetable crops: A growth, yield and sustenance perspective. Frontiers in Plant Science 13: 878498. https://doi.org/10.3389/fpls.2022.878498

10.3389/fpls.2022.87849835837452PMC9274134
19

Chauhdary, J.N., Li, H., Jiang, Y., Pan, X., Hussain, Z., Javaid, M., Rizwan, M. 2024. Advances in sprinkler irrigation: A review in the context of precision irrigation for crop production. Agronomy 14(1): 47. https://doi.org/10.3390/agronomy14010047

10.3390/agronomy14010047
20

Chen, W.H., Mattson, N.S., You, F. 2022. Intelligent control and energy optimization in controlled environment agriculture via nonlinear model predictive control of semi-closed greenhouse. Applied Energy 320: 119334. https://doi.org/10.1016/j.apenergy.2022.119334

10.1016/j.apenergy.2022.119334
21

Cheong, P.S., Bergs, J., Hawinkel, C., Famaey, J. 2017. Comparison of LoRaWAN classes and their power consumption. IEEE Symposium on Communications and Vehicular Technology. pp. 1-6. https://doi.org/10.1109/SCVT.2017.8240313

10.1109/SCVT.2017.8240313
22

Citoni, B. 2022. LoRaWAN simulation and analysis for performance enhancement of realistic networks. Ph.D. thesis, University of Glasgow, Glasgow, UK.

23

Costantino, A., Comba, L., Sicardi, G., Bariani, M., Fabrizio, E. 2021. Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modeling-based assessment and investigation. Applied Energy 288: 116583. https://doi.org/10.1016/j.apenergy.2021.116583

10.1016/j.apenergy.2021.116583
24

Cotrim, J.R., Kleinschmidt, J.H. 2020. LoRaWAN Mesh networks: A review and classification of multihop communication. Sensors 20(15): 1-21. https://doi.org/10.3390/s20154273

10.3390/s2015427332751877PMC7435450
25

Da Rocha, Á.B., Fernandes, E.M., Dos Santos, C.A.C., Diniz, J.M.T., Junior, W.F.A. 2021. Development of a real-time surface solar radiation measurement system based on the Internet of Things (IoT). Sensors 21(11): 3836. https://doi.org/10.3390/s21113836

10.3390/s2111383634206024PMC8198021
26

Et-taibi, B., Abid, M.R., Boufounas, E.M., Morchid, A., Bourhnane, S., Abu Hamed, T., Benhaddou, D. 2024. Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system. Results in Engineering 22: 102283. https://doi.org/10.1016/j.rineng.2024.102283

10.1016/j.rineng.2024.102283
27

Fatima, T., Umar, R. 2025. Enhancing healthcare predictions with machine learning: A logistic regression-based model for heart disease detection. ResearchGate Report. February 2025.

28

Ferrante, A., Mariani, L. 2018. Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae 4(3): 21. https://doi.org/10.3390/horticulturae4030021

10.3390/horticulturae4030021
29

Frausto-Vicencio, I., Moreno, A., Goldsmith, H., Hsu, Y.K., Hopkins, F.M. 2021.Characterizing the performance of a compact BTEX GC-PID for near-real time analysis and field deployment. Sensors 21(6):2064. https://doi.org/10.3390/s21062095

10.3390/s2106209533802681PMC8002566
30

Flach, T., Dukkipati, N., Terzis, A., Raghavan, B., Cardwell, N., Cheng, Y., Jain, A., Hao, S., Katz-Bassett, E., Govindan, R. 2013. Reducing web latency: The virtue of gentle aggression. In: Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. pp. 159-170. https://doi.org/10.1145/2486001.2486014

10.1145/2486001.2486014
31

Garcia, M., Patel, K. 2017. Implementing effective network security measures in financial systems: Lessons learned. Cybersecurity.

32

Getahun, S., Kefale, H., Gelaye, Y. 2024. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. TheScientificWorldJournal 2024: 2126734. https://doi.org/10.1155/2024/2126734

10.1155/2024/212673439421732PMC11483651
33

Gkotsiopoulos, P., Zorbas, D., Douligeris, C. 2021. Performance determinants in LoRa networks: A literature review. IEEE Communications Surveys and Tutorials 23(3): 1721-1758. https://doi.org/10.1109/COMST.2021.3090409

10.1109/COMST.2021.3090409
34

Glória, A., Sebastião, P., Dionísio, C., Simões, G., Cardoso, J. 2020. Water management for sustainable irrigation systems using Internet-of-Things. Sensors 20(5): 1402. https://doi.org/10.3390/s20051402

10.3390/s2005140232143482PMC7085535
35

Gorthi, S., Chakraborty, S., Li, B., Weindorf, D.C. 2020. A field-portable acoustic sensing device to measure soil moisture. Computers and Electronics in Agriculture 174: 105517. https://doi.org/10.1016/j.compag.2020.105517

10.1016/j.compag.2020.105517
36

Habeeb, H.A., Wahab, D.A., Azman, A.H., Alkahari, M.R. 2023. A design optimization method based on artificial intelligence (hybrid method) for repair and restoration using additive manufacturing technology. Metals 13(3):490. https://doi.org/10.3390/met13030490

10.3390/met13030490
37

Hamdan, S., Ayyash, M., Almajali, S. 2020. Edge-computing architectures for Internet of things applications: A survey. Sensors 20(22): 1-52. https://doi.org/10.3390/s20226441

10.3390/s2022644133187267PMC7696529
38

Han, J., Chong, A., Lim, J., Ramasamy, S., Wong, N.H., Biljecki, F. 2024. Microclimate spatio-temporal prediction using deep learning and land use data. Building and Environment 253: 111358. https://doi.org/10.1016/j.buildenv.2024.111358

10.1016/j.buildenv.2024.111358
39

Honkavaara, E., Eskelinen, M.A., Polonen, I., Saari, H., Ojanen, H., Mannila, R., Holmlund, C., Hakala, T., Litkey, P., Rosnell, T., Viljanen, N., Pulkkanen, M.. 2016. Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV). IEEE Transactions on Geoscience and Remote Sensing 54(9): 5440-5454. https://doi.org/10.1109/TGRS.2016.2565471

10.1109/TGRS.2016.2565471
40

Hoseinzadeh, S., Garcia, D.A. 2024. Can AI predict the impact of its implementation in greenhouse farming? Renewable and Sustainable Energy Reviews 197: 114423. https://doi.org/10.1016/j.rser.2024.114423

10.1016/j.rser.2024.114423
41

Hosny, K.M., El-Hady, W.M., Samy, F.M. 2024. Technologies, protocols, and applications of Internet of Things in greenhouse farming: A survey of recent advances. Information Processing in Agriculture. 12: 91-111. https://doi.org/10.1016/j.inpa.2024.04.002

10.1016/j.inpa.2024.04.002
42

Ihoume, A.E., Gandomi, A.H., Mahmud, M., Khosravi, A. 2023.TinyML-oriented deep learning model for intelligent greenhouse microclimate control.Intelligent systems design and applications: Proceedings of ISDA 2022. pp. 325-336. https://doi.org/10.1007/978-981-19-7663-6_27

10.1007/978-981-19-7663-6_27
43

Iqbal, M.Z., Islam, M.N., Kabir, M.S., Gulandaz, M.A., Reza, M.N., Jang, S.H., Chung, S.O. 2023. Comparison of heating modules for suspension-type multipoint temperature variability management in smart greenhouses. Smart Agricultural Technology 5: 100296. https://doi.org/10.1016/j.atech.2023.100296

10.1016/j.atech.2023.100296
44

Ismail, A.S., Mamat, M.H., Md Sin, N.D., Malek, M.F., Zoolfakar, A.S., Suriani, A.B., Mohamed, A., Ahmad, M.K., Rusop, M. 2016. Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol-gel immersion for room temperature, resistive-type humidity sensor applications. Ceramics International 42(8): 9785-9795. https://doi.org/10.1016/j.ceramint.2016.03.071

10.1016/j.ceramint.2016.03.071
45

Kale, D. 2024. Artificial intelligence in sustainable agriculture: Enhancing efficiency and reducing environmental impact. August: 5-12.

46

Ketshabetswe, L.K., Zungeru, A.M., Mangwala, M., Chuma, J.M., Sigweni, B. 2019. Communication protocols for wireless sensor networks: A survey and comparison. Heliyon 5(5): e01591. https://doi.org/10.1016/j.heliyon.2019.e01591

10.1016/j.heliyon.2019.e0159131193432PMC6531673
47

Kim, T.H., Lee, K.Y., Ali, M.R., Reza, M.N., Chung, S.O., Kang, N.R. 2023. PID control for greenhouse climate regulation: A review. Precision Agriculture Science and Technology 5(2): 94. https://doi.org/10.12972/pastj.20230008

10.12972/pastj.20230008
48

Kontogiannis, S., Koundouras, S., Pikridas, C. 2024. Proposed fuzzy-stranded-neural network model that utilizes IoT plant-level sensory monitoring and distributed services for the early detection of downy mildew in viticulture. Computers 13(3): 63. https://doi.org/10.3390/computers13030063

10.3390/computers13030063
49

Kowli, A., Rani, V., Sanap, M. 2023. Data-driven virtual sensing for spatial distribution of temperature and humidity. Journal of Building Engineering 67: 105949. https://doi.org/10.1016/j.jobe.2022.105726

10.1016/j.jobe.2022.105726
50

Kufakunesu, R., Hancke, G.P., Abu-Mahfouz, A.M. 2020. A survey on adaptive data rate optimization in LoRaWAN: Recent solutions and major challenges. Sensors 20(18): 1-25. https://doi.org/10.3390/s20185044

10.3390/s2018504432899454PMC7571005
51

Kufakunesu, R., Hancke, G.P., Abu-Mahfouz, A.M. 2024. Collision avoidance adaptive data rate algorithm for LoRaWAN. Future Internet 16(10): 1-19. https://doi.org/10.3390/fi16100380

10.3390/fi16100380
52

Larsson, P., Gross, J., Al-Zubaidy, H., Rasmussen, L.K., Skoglund, M. 2016. Effective capacity of retransmission schemes: A recurrence relation approach. IEEE Transactions on Communications 64(11): 4817-4835. https://doi.org/10.1109/TCOMM.2016.2602864

10.1109/TCOMM.2016.2602864
53

Lazarescu, M.T. 2013. Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 3(1): 45-54. https://doi.org/10.1109/JETCAS.2013.2243032

10.1109/JETCAS.2013.2243032
54

Lee, M.H., Yao, M.H., Kow, P.Y., Kuo, B.J., Chang, F.J. 2024. An artificial intelligence-powered environmental control system for resilient and efficient greenhouse farming. Sustainability 16(24): 1-18. https://doi.org/10.3390/su162410958

10.3390/su162410958
55

Lee, T.Y., Reza, M.N., Chung, S.O., Kim, D.U., Lee, S.Y., Choi, D.H. 2023. Application of fuzzy logics for smart agriculture: A review. Precision Agriculture Science and Technology 5(1): 1. https://doi.org/10.12972/pastj.20230001

10.12972/pastj.20230001
56

Lim, J.W., Reza, M.N., Chung, S.O., Lee, K.Y., Lee, S.Y., Lee, K.N., Lee, B. 2023. Application of artificial neural network in smart protected horticulture: A review. Precision Agriculture Science and Technology 5(1): 30. https://doi.org/10.12972/pastj.20230003

10.12972/pastj.20230003
57

Liu, Y., Xie, G., Tang, Y., Li, R. 2019. Improving real-time performance under reliability requirement assurance in automotive electronic systems. IEEE Access 7: 140875-140888. https://doi.org/10.1109/ACCESS.2019.2944204

10.1109/ACCESS.2019.2944204
58

López-Ortiz, J.E., Hernández-Nolasco, J.A., Carrillo-Nuñez, H., García-Vázquez, J.P. 2020. LoRaWAN module power consumption evaluation in a smart campus context. Sensors 20(17): 4794.

59

Lu, Y., Liu, M., Li, C., Liu, X., Cao, C., Li, X., Kan, Z. 2022. Precision fertilization and irrigation: Progress and applications. AgriEngineering 4(3): 626-655. https://doi.org/10.3390/agriengineering4030041

10.3390/agriengineering4030041
60

Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Madrigal, V.P., Mallinis, G., Dor, E.B., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M.I., de Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Toth, B. 2018. On the use of unmanned aerial systems for environmental monitoring. Remote Sensing 10(4): 641. https://doi.org/10.3390/rs10040641

10.3390/rs10040641
61

Mehic, M., Duliman, M., Selimovic, N., Voznak, M. 2022. LoRaWAN end nodes: Security and energy efficiency analysis. Alexandria Engineering Journal 61(11): 8997-9009. https://doi.org/10.1016/j.aej.2022.02.035

10.1016/j.aej.2022.02.035
62

Mowla, M.N., Mowla, N., Shah, A.F.M.S., Rabie, K.M., Shongwe, T. 2023. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 11: 145813-145852. https://doi.org/10.1109/ACCESS.2023.3346299

10.1109/ACCESS.2023.3346299
63

Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A. 2012. Closing yield gaps through nutrient and water management. Nature 490(7419): 254-257. https://doi.org/10.1038/nature11420

10.1038/nature1142022932270
64

Nadal, A., Llorach-Massana, P., Cuerva, E., López-Capel, E., Montero, J.I., Josa, A., Rieradevall, J., Royapoor, M. 2017. Building-integrated rooftop greenhouses: An energy and environmental assessment in the Mediterranean context. Applied Energy 187: 338-351. https://doi.org/10.1016/j.apenergy.2016.11.051

10.1016/j.apenergy.2016.11.051
65

Navarro-Serrano, F., López-Moreno, J.I., Azorin-Molina, C., Buisán, S., Domínguez-Castro, F., Sanmiguel-Vallelado, A., Alonso-González, E., Khorchani, M. 2019. Air temperature measurements using autonomous self-recording dataloggers in mountainous and snow-covered areas. Atmospheric Research 224: 168-179. https://doi.org/10.1016/j.atmosres.2019.03.034

10.1016/j.atmosres.2019.03.034
66

Park, J., Kim, J. 2021. An implementation design of unified protocol architecture for physical layer of LoRaWAN end-nodes. Electronics 10(20): 1-24. https://doi.org/10.3390/electronics10202550

10.3390/electronics10202550
67

Parra-López, C., Ben Abdallah, S., Garcia-Garcia, G., Hassoun, A., Sánchez-Zamora, P., Trollman, H., Jagtap, S., Carmona-Torres, C. 2024. Integrating digital technologies in agriculture for climate change adaptation and mitigation: State of the art and future perspectives. Computers and Electronics in Agriculture 226: 107176. https://doi.org/10.1016/j.compag.2024.109412

10.1016/j.compag.2024.109412
68

Parry, M.A.J., Reynolds, M., Salvucci, M.E., Raines, C., Andralojc, P.J., Zhu, X.G., Price, G.D., Condon, A.G., Furbank, R.T. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany 62(2): 453-467. https://doi.org/10.1093/jxb/erq304

10.1093/jxb/erq30421030385
69

Ray, P.P., Skala, K. 2022. Internet of things aware secure dew computing architecture for distributed hotspot network: A conceptual study. Applied Sciences 12(18): 8963. https://doi.org/10.3390/app12188963

10.3390/app12188963
70

Rayhana, R., Xiao, G., Liu, Z. 2020. Internet of Things empowered smart greenhouse farming. IEEE Journal of Radio Frequency Identification 4(3): 195-211. https://doi.org/10.1109/JRFID.2020.2984391

10.1109/JRFID.2020.2984391
71

Renzone, G.D., Landi, E., Mugnaini, M., Parri, L., Peruzzi, G., Pozzebon, A. 2022. Assessment of LoRaWAN transmission systems under temperature and humidity, gas, and vibration aging effects within IoT contexts. IEEE Transactions on Instrumentation and Measurement 71: 1-11. https://doi.org/10.1109/TIM.2021.3137568

10.1109/TIM.2021.3137568
72

Reza, M.N., Islam, M.N., Iqbal, M.Z., Kabir, M.S., Chowdhury, M., Gulandaz, M.A., Ali, M., Jang, M.K., Chung, S.O. 2023. Spatial, temporal, and vertical variability of ambient environmental conditions in Chinese solar greenhouses during winter. Applied Sciences 13(17): 9835. https://doi.org/10.3390/app13179835

10.3390/app13179835
73

Ruan, Y., Li, J., Xiao, Q., Wu, Y., Shi, M. 2023. High-temperature failure evolution analysis of K-type film thermocouples. Micromachines 14(11): 2070. https://doi.org/10.3390/mi14112070

10.3390/mi1411207038004927PMC10672794
74

Săcăleanu, D.I., Matache, M.G., Roșu, Ș.G., Florea, B.C., Manciu, I.P., Perișoară, L.A. 2024. IoT-enhanced decision support system for real-time greenhouse microclimate monitoring and control. Technologies 12(11): 230. https://doi.org/10.3390/technologies12110230

10.3390/technologies12110230
75

Sachtleben, R., Peleska, J. 2022. Effective grey-box testing with partial FSM models. Software Testing Verification and Reliability 32(2): 1-27. https://doi.org/10.1002/stvr.1806

10.1002/stvr.1806
76

Sadiqbatcha, S., Zhang, J., Amrouch, H., Tan, S.X.D. 2022. Real-time full-chip thermal tracking: A post-silicon, machine learning perspective. IEEE Transactions on Computers 71(6): 1411-1424.

77

Selvam, A.P. 2023. The impact of IoT and sensor integration on real-time weather monitoring systems: A systematic review. International Research Journal on Advanced Science Hub 5(11): 1-71. https://doi.org/10.21203/rs.3.rs-3579172/v1

10.21203/rs.3.rs-3579172/v1
78

Shahab, H., Iqbal, M., Sohaib, A., Ullah Khan, F., Waqas, M. 2024. IoT-based agriculture management techniques for sustainable farming: A comprehensive review. Computers and Electronics in Agriculture 220: 108851. https://doi.org/10.1016/j.compag.2024.108851

10.1016/j.compag.2024.108851
79

Shamshiri, R.R., Hameed, I.A., Thorp, K.R., Balasundram, S.K., Shafian, S., Fatemieh, M., Sultan, M., Mahns, B., Samiei, S. 2021. Greenhouse automation using wireless sensors and IoT instruments integrated with artificial intelligence. In Next-Generation Greenhouses for Food Security. pp. 1-22.

80

Sharma, K., Shivandu, S.K. 2024. Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International 5(August): 100292. https://doi.org/10.1016/j.sintl.2024.100292

10.1016/j.sintl.2024.100292
81

Singh, R.K., Aernouts, M., De Meyer, M., Weyn, M., Berkvens, R. 2020. Leveraging LoRaWAN technology for precision agriculture in greenhouses. Sensors 20(7): 1827. https://doi.org/10.3390/s20071827

10.3390/s2007182732218353PMC7181210
82

Singh, S. 2018. Agrometeorological requirements for sustainable vegetable crops production. Journal of Food Protection 2: 1-22.

83

Sun, A.Y., Scanlon, B.R. 2019. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environmental Research Letters 14(7). https://doi.org/10.1088/1748-9326/ab1b7d

10.1088/1748-9326/ab1b7d
84

Tamang, D., Pozzebon, A., Parri, L., Fort, A., Abrardo, A. 2022. Designing a reliable and low-latency LoRaWAN solution for environmental monitoring in factories at major accident risk. Sensors 22(6). https://doi.org/10.3390/s22062372

10.3390/s2206237235336543PMC8948738
85

Tang, X., Yang, J., Duan, Z., Bu, Y., Yuan, Z., Jiang, Y., Tai, H. 2024. Advances in paper-based photodetectors: Fabrications, performances, and applications. Advanced Optical Materials 2401114: 1-22. https://doi.org/10.1002/adom.202401114

10.1002/adom.202401114
86

Thaenkaew, P., Quoitin, B., Meddahi, A. 2023. Leveraging larger AES keys in LoRaWAN: A practical evaluation of energy and time costs. Sensors 23(22): 1-23. https://doi.org/10.3390/s23229172

10.3390/s2322917238005557PMC10674829
87

Ukoba, K., Olatunji, K.O., Adeoye, E., Jen, T.C., Madyira, D.M. 2024. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy and Environment 35(7): 3833-3879. https://doi.org/10.1177/0958305X241256293

10.1177/0958305X241256293
88

Valente, J., Costa, D., Ventura, R., Catarino, A.P. 2023. IoT-enhanced decision support system for real-time greenhouse monitoring. Technologies 12(11): 230. https://doi.org/10.3390/technologies12110230

10.3390/technologies12110230
89

Wang, J., Fan, P.G. 2020. Research and implement of just-in-time dual buffer-queues in LoRaWAN gateways. 2020 IEEE 8th International Conference on Information, Communication and Networks, ICICN 2020. pp. 63-68. https://doi.org/10.1109/ICICN51133.2020.9205105

10.1109/ICICN51133.2020.9205105
90

Wei, H., Xu, W., Kang, B., Eisner, R., Muleke, A., Rodriguez, D., deVoil, P., Sadras, V., Monjardino, M., Harrison, M.T. 2024. Irrigation with artificial intelligence: Problems, premises, promises. Human-Centric Intelligent Systems 4(2): 187-205. https://doi.org/10.1007/s44230-024-00072-4

10.1007/s44230-024-00072-4
91

Xue, J., Shou, G., Liu, Y., Hu, Y. 2024. Scheduling time-critical traffic with virtual queues in software-defined time-sensitive networking. IEEE Transactions on Network and Service Management 21(1): 967-978. https://doi.org/10.1109/TNSM.2023.3287634

10.1109/TNSM.2023.3287634
92

You, I., Kwon, S., Choudhary, G., Sharma, V., Seo, J.T. 2018. An enhanced LoRaWAN security protocol for privacy preservation in IoT with a case study on a smart factory-enabled parking system. Sensors 18(6): 1-32. https://doi.org/10.3390/s18061888

10.3390/s1806188829890704PMC6021832
93

Zeng, K., Zheng, G., Ma, L., Ju, W., Pang, Y. 2019. Modeling three-dimensional spatiotemporal distributions of forest photosynthetically active radiation using UAV-Based lidar data. Remote Sensing 11(23): 2806. https://doi.org/10.3390/rs11232806

10.3390/rs11232806
94

Zhang, C., Xu, K., Liu, K., Xu, J., Zheng, Z. 2022. Metal oxide resistive sensors for carbon dioxide detection. Coordination Chemistry Reviews 472: 214758. https://doi.org/10.1016/j.ccr.2022.214758

10.1016/j.ccr.2022.214758
95

Zhao, G., Zhao, Q., Webber, H., Johnen, A., Rossi, V., Nogueira Junior, A.F. 2024. Integrating machine learning and change detection for enhanced crop disease forecasting in rice farming: A multi-regional study. European Journal of Agronomy 160: 127317. https://doi.org/10.1016/j.eja.2024.127317

10.1016/j.eja.2024.127317
96

Zhao, N., Tan, Q., Dong, H., Pang, J., Wang, X., Zhang, J., Yao, X. 2021. Design and fabrication of thermocouple sensors based on a ceramic curved alumina substrate. IEEE Sensors Journal 21(18): 19780-19788. https://doi.org/10.1109/JSEN.2021.3095098

10.1109/JSEN.2021.3095098
Information
  • Publisher :Korean Society of Precision Agriculture
  • Publisher(Ko) :한국정밀농업학회
  • Journal Title :Precision Agriculture Science and Technology
  • Journal Title(Ko) :정밀농업과학기술
  • Volume : 7
  • No :1
  • Pages :28-46
  • Received Date : 2025-03-10
  • Revised Date : 2025-03-31
  • Accepted Date : 2025-03-31