Review Article
Abdallah, B., Khriji, S., Chéour, R., Lahoud, C., Moessner, K., Kanoun, O. 2024. Improving the reliability of long-range communication against interference for non-line-of-sight conditions in industrial Internet of Things applications. Applied Sciences 14(2): 868. https://doi.org/10.3390/app14020868
10.3390/app14020868Adla, S., Rai, N.K., Karumanchi, S.H., Tripathi, S., Disse, M., Pande, S. 2020. Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors 20(2): 20020363. https://doi.org/10.3390/s20020363
10.3390/s2002036331936425PMC7014303Ahmed, H.A., Tong, Y.X., Yang, Q.C., Al-Faraj, A.A., Abdel-Ghany, A.M. 2019. Spatial distribution of air temperature and relative humidity in the greenhouse as affected by external shading in arid climates. Journal of Integrative Agriculture 18(12): 2869-2882. https://doi.org/10.1016/S2095-3119(19)62598-0
10.1016/S2095-3119(19)62598-0Ahmed, S., Reza, M.N., Samsuzzaman, Karim, M.R., Jin, H., Kim, H., Chung, S.O. 2024. Vegetation effects on LoRa-based wireless sensor communication for remote monitoring of automatic orchard irrigation status. IoT 6(1): 2. https://doi.org/10.3390/iot6010002
10.3390/iot6010002Ahmed, Z., Gui, D., Murtaza, G., Yunfei, L., Ali, S. 2023. An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy 13(8): 1-25. https://doi.org/10.3390/agronomy13082113
10.3390/agronomy13082113Al-Haija, Q.A., Samad, M.D. 2020. Efficient LuxMeter design using TM4C123 microcontroller with motion detection application. Proceedings of the 11th International Conference on Information and Communication Systems (ICICS 2020). pp. 331-336. https://doi.org/10.1109/ICICS49469.2020.239523
10.1109/ICICS49469.2020.239523Aldhaheri, L., Alshehhi, N., Manzil, I.I.J., Khalil, R.A., Javaid, S., Saeed, N., Alouini, M.S. 2024. LoRa communication for agriculture 4.0: Opportunities, challenges, and future directions. IEEE Internet of Things Journal 12(2): 1380-1407. https://doi.org/10.1109/JIOT.2024.3486369
10.1109/JIOT.2024.3486369Ali, M., Gunawan, A.A.N., Prasetya, D.A., Ibrahim, M.Z.B., Diyasa, I.G.S.M. 2024. Impact of smart greenhouse using IoT for enhanced quality of plant growth. International Journal of Robotics and Control Systems 4(3): 1473-1489. https://doi.org/10.31763/ijrcs.v4i3.1277
10.31763/ijrcs.v4i3.1277Alumfareh, M.F., Humayun, M., Ahmad, Z., Khan, A. 2024. An intelligent LoRaWAN-based IoT device for monitoring and control solutions in smart farming through anomaly detection integrated with unsupervised machine learning. IEEE Access 12: 119072- 119086. https://doi.org/10.1109/ACCESS.2024.3450587
10.1109/ACCESS.2024.3450587Arshad, J., Aziz, M., Al-Huqail, A.A., Zaman, M.H.U., Husnain, M., Rehman, A.U., Shafiq, M. 2022. Implementation of a LoRaWAN-based smart agriculture decision support system for optimum crop yield. Sustainability 14(2): 1-20. https://doi.org/10.3390/su14020827
10.3390/su14020827Asteriou, V, Kantelis K, Beletsioti GA, Valkanis A, Nicopolitidis P, Papadimitriou G. 2024. Adaptive Spatial Scheduling for Event Traffic in LoRaWAN Networks. Sensors 24(7): 2222. https://doi.org/10.3390/s24072222
10.3390/s2407222238610433PMC11014082Bassous. N.J., Rodriguez, A.C., Leal, C.I.L., Jung, H.Y., Lee, C.K., Joo, S., Kim, S., Yun, C., Hahm, M.G., Ahn, M., Kim, S., Oh, Y.S., Shin, S.R. 2024. Significance of various sensing mechanisms for detecting local and atmospheric greenhouse gases: A review. Advanced Sensor Research 3(2): 1-32. https://doi.org/10.1002/adsr.202470007
10.1002/adsr.202470007Bersani, C., Ruggiero, C., Sacile, R., Soussi, A., Zero, E. 2022. Internet of Things approaches for monitoring and control of smart greenhouses in Industry 4.0. Energies 15(10):3834. https://doi.org/10.3390/en15103834
10.3390/en15103834Bicamumakuba, E., Habineza, E., Lee, K., Chung, S. 2024. Sensor technologies for remote monitoring of automated orchard irrigation: A review. Precision Agriculture Science and Technology 6(2): 81-95.
Bierer, A.M., Tang, L. 2024. Drought responses in three apple cultivars using an autonomous sensor-based irrigation system. HortScience 59(4): 431-441. https://doi.org/10.21273/HORTSCI17520-23
10.21273/HORTSCI17520-23Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F. 2011. Energy efficiency in the future Internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Communications Surveys and Tutorials 13(2): 223-244. https://doi.org/10.1109/SURV.2011.071410.00073
10.1109/SURV.2011.071410.00073Buckley, D.J., Black, N.C.G., Castanon, E.G., Melios, C., Hardman, M., Kazakova, O. 2020. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Materials 7(3): 032002. https://doi.org/10.1088/2053-1583/ab7bc5
10.1088/2053-1583/ab7bc5Chaudhary, S., Devi, P., HanumanthaRao, B., Jha, U.C., Sharma, K.D., Prasad, P.V.V., Kumar, S., Siddique, K.H.M., Nayyar, H. 2022. Physiological and molecular approaches for developing thermotolerance in vegetable crops: A growth, yield and sustenance perspective. Frontiers in Plant Science 13: 878498. https://doi.org/10.3389/fpls.2022.878498
10.3389/fpls.2022.87849835837452PMC9274134Chauhdary, J.N., Li, H., Jiang, Y., Pan, X., Hussain, Z., Javaid, M., Rizwan, M. 2024. Advances in sprinkler irrigation: A review in the context of precision irrigation for crop production. Agronomy 14(1): 47. https://doi.org/10.3390/agronomy14010047
10.3390/agronomy14010047Chen, W.H., Mattson, N.S., You, F. 2022. Intelligent control and energy optimization in controlled environment agriculture via nonlinear model predictive control of semi-closed greenhouse. Applied Energy 320: 119334. https://doi.org/10.1016/j.apenergy.2022.119334
10.1016/j.apenergy.2022.119334Cheong, P.S., Bergs, J., Hawinkel, C., Famaey, J. 2017. Comparison of LoRaWAN classes and their power consumption. IEEE Symposium on Communications and Vehicular Technology. pp. 1-6. https://doi.org/10.1109/SCVT.2017.8240313
10.1109/SCVT.2017.8240313Citoni, B. 2022. LoRaWAN simulation and analysis for performance enhancement of realistic networks. Ph.D. thesis, University of Glasgow, Glasgow, UK.
Costantino, A., Comba, L., Sicardi, G., Bariani, M., Fabrizio, E. 2021. Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modeling-based assessment and investigation. Applied Energy 288: 116583. https://doi.org/10.1016/j.apenergy.2021.116583
10.1016/j.apenergy.2021.116583Cotrim, J.R., Kleinschmidt, J.H. 2020. LoRaWAN Mesh networks: A review and classification of multihop communication. Sensors 20(15): 1-21. https://doi.org/10.3390/s20154273
10.3390/s2015427332751877PMC7435450Da Rocha, Á.B., Fernandes, E.M., Dos Santos, C.A.C., Diniz, J.M.T., Junior, W.F.A. 2021. Development of a real-time surface solar radiation measurement system based on the Internet of Things (IoT). Sensors 21(11): 3836. https://doi.org/10.3390/s21113836
10.3390/s2111383634206024PMC8198021Et-taibi, B., Abid, M.R., Boufounas, E.M., Morchid, A., Bourhnane, S., Abu Hamed, T., Benhaddou, D. 2024. Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system. Results in Engineering 22: 102283. https://doi.org/10.1016/j.rineng.2024.102283
10.1016/j.rineng.2024.102283Fatima, T., Umar, R. 2025. Enhancing healthcare predictions with machine learning: A logistic regression-based model for heart disease detection. ResearchGate Report. February 2025.
Ferrante, A., Mariani, L. 2018. Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae 4(3): 21. https://doi.org/10.3390/horticulturae4030021
10.3390/horticulturae4030021Frausto-Vicencio, I., Moreno, A., Goldsmith, H., Hsu, Y.K., Hopkins, F.M. 2021.Characterizing the performance of a compact BTEX GC-PID for near-real time analysis and field deployment. Sensors 21(6):2064. https://doi.org/10.3390/s21062095
10.3390/s2106209533802681PMC8002566Flach, T., Dukkipati, N., Terzis, A., Raghavan, B., Cardwell, N., Cheng, Y., Jain, A., Hao, S., Katz-Bassett, E., Govindan, R. 2013. Reducing web latency: The virtue of gentle aggression. In: Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. pp. 159-170. https://doi.org/10.1145/2486001.2486014
10.1145/2486001.2486014Garcia, M., Patel, K. 2017. Implementing effective network security measures in financial systems: Lessons learned. Cybersecurity.
Getahun, S., Kefale, H., Gelaye, Y. 2024. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. TheScientificWorldJournal 2024: 2126734. https://doi.org/10.1155/2024/2126734
10.1155/2024/212673439421732PMC11483651Gkotsiopoulos, P., Zorbas, D., Douligeris, C. 2021. Performance determinants in LoRa networks: A literature review. IEEE Communications Surveys and Tutorials 23(3): 1721-1758. https://doi.org/10.1109/COMST.2021.3090409
10.1109/COMST.2021.3090409Glória, A., Sebastião, P., Dionísio, C., Simões, G., Cardoso, J. 2020. Water management for sustainable irrigation systems using Internet-of-Things. Sensors 20(5): 1402. https://doi.org/10.3390/s20051402
10.3390/s2005140232143482PMC7085535Gorthi, S., Chakraborty, S., Li, B., Weindorf, D.C. 2020. A field-portable acoustic sensing device to measure soil moisture. Computers and Electronics in Agriculture 174: 105517. https://doi.org/10.1016/j.compag.2020.105517
10.1016/j.compag.2020.105517Habeeb, H.A., Wahab, D.A., Azman, A.H., Alkahari, M.R. 2023. A design optimization method based on artificial intelligence (hybrid method) for repair and restoration using additive manufacturing technology. Metals 13(3):490. https://doi.org/10.3390/met13030490
10.3390/met13030490Hamdan, S., Ayyash, M., Almajali, S. 2020. Edge-computing architectures for Internet of things applications: A survey. Sensors 20(22): 1-52. https://doi.org/10.3390/s20226441
10.3390/s2022644133187267PMC7696529Han, J., Chong, A., Lim, J., Ramasamy, S., Wong, N.H., Biljecki, F. 2024. Microclimate spatio-temporal prediction using deep learning and land use data. Building and Environment 253: 111358. https://doi.org/10.1016/j.buildenv.2024.111358
10.1016/j.buildenv.2024.111358Honkavaara, E., Eskelinen, M.A., Polonen, I., Saari, H., Ojanen, H., Mannila, R., Holmlund, C., Hakala, T., Litkey, P., Rosnell, T., Viljanen, N., Pulkkanen, M.. 2016. Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV). IEEE Transactions on Geoscience and Remote Sensing 54(9): 5440-5454. https://doi.org/10.1109/TGRS.2016.2565471
10.1109/TGRS.2016.2565471Hoseinzadeh, S., Garcia, D.A. 2024. Can AI predict the impact of its implementation in greenhouse farming? Renewable and Sustainable Energy Reviews 197: 114423. https://doi.org/10.1016/j.rser.2024.114423
10.1016/j.rser.2024.114423Hosny, K.M., El-Hady, W.M., Samy, F.M. 2024. Technologies, protocols, and applications of Internet of Things in greenhouse farming: A survey of recent advances. Information Processing in Agriculture. 12: 91-111. https://doi.org/10.1016/j.inpa.2024.04.002
10.1016/j.inpa.2024.04.002Ihoume, A.E., Gandomi, A.H., Mahmud, M., Khosravi, A. 2023.TinyML-oriented deep learning model for intelligent greenhouse microclimate control.Intelligent systems design and applications: Proceedings of ISDA 2022. pp. 325-336. https://doi.org/10.1007/978-981-19-7663-6_27
10.1007/978-981-19-7663-6_27Iqbal, M.Z., Islam, M.N., Kabir, M.S., Gulandaz, M.A., Reza, M.N., Jang, S.H., Chung, S.O. 2023. Comparison of heating modules for suspension-type multipoint temperature variability management in smart greenhouses. Smart Agricultural Technology 5: 100296. https://doi.org/10.1016/j.atech.2023.100296
10.1016/j.atech.2023.100296Ismail, A.S., Mamat, M.H., Md Sin, N.D., Malek, M.F., Zoolfakar, A.S., Suriani, A.B., Mohamed, A., Ahmad, M.K., Rusop, M. 2016. Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol-gel immersion for room temperature, resistive-type humidity sensor applications. Ceramics International 42(8): 9785-9795. https://doi.org/10.1016/j.ceramint.2016.03.071
10.1016/j.ceramint.2016.03.071Kale, D. 2024. Artificial intelligence in sustainable agriculture: Enhancing efficiency and reducing environmental impact. August: 5-12.
Ketshabetswe, L.K., Zungeru, A.M., Mangwala, M., Chuma, J.M., Sigweni, B. 2019. Communication protocols for wireless sensor networks: A survey and comparison. Heliyon 5(5): e01591. https://doi.org/10.1016/j.heliyon.2019.e01591
10.1016/j.heliyon.2019.e0159131193432PMC6531673Kim, T.H., Lee, K.Y., Ali, M.R., Reza, M.N., Chung, S.O., Kang, N.R. 2023. PID control for greenhouse climate regulation: A review. Precision Agriculture Science and Technology 5(2): 94. https://doi.org/10.12972/pastj.20230008
10.12972/pastj.20230008Kontogiannis, S., Koundouras, S., Pikridas, C. 2024. Proposed fuzzy-stranded-neural network model that utilizes IoT plant-level sensory monitoring and distributed services for the early detection of downy mildew in viticulture. Computers 13(3): 63. https://doi.org/10.3390/computers13030063
10.3390/computers13030063Kowli, A., Rani, V., Sanap, M. 2023. Data-driven virtual sensing for spatial distribution of temperature and humidity. Journal of Building Engineering 67: 105949. https://doi.org/10.1016/j.jobe.2022.105726
10.1016/j.jobe.2022.105726Kufakunesu, R., Hancke, G.P., Abu-Mahfouz, A.M. 2020. A survey on adaptive data rate optimization in LoRaWAN: Recent solutions and major challenges. Sensors 20(18): 1-25. https://doi.org/10.3390/s20185044
10.3390/s2018504432899454PMC7571005Kufakunesu, R., Hancke, G.P., Abu-Mahfouz, A.M. 2024. Collision avoidance adaptive data rate algorithm for LoRaWAN. Future Internet 16(10): 1-19. https://doi.org/10.3390/fi16100380
10.3390/fi16100380Larsson, P., Gross, J., Al-Zubaidy, H., Rasmussen, L.K., Skoglund, M. 2016. Effective capacity of retransmission schemes: A recurrence relation approach. IEEE Transactions on Communications 64(11): 4817-4835. https://doi.org/10.1109/TCOMM.2016.2602864
10.1109/TCOMM.2016.2602864Lazarescu, M.T. 2013. Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 3(1): 45-54. https://doi.org/10.1109/JETCAS.2013.2243032
10.1109/JETCAS.2013.2243032Lee, M.H., Yao, M.H., Kow, P.Y., Kuo, B.J., Chang, F.J. 2024. An artificial intelligence-powered environmental control system for resilient and efficient greenhouse farming. Sustainability 16(24): 1-18. https://doi.org/10.3390/su162410958
10.3390/su162410958Lee, T.Y., Reza, M.N., Chung, S.O., Kim, D.U., Lee, S.Y., Choi, D.H. 2023. Application of fuzzy logics for smart agriculture: A review. Precision Agriculture Science and Technology 5(1): 1. https://doi.org/10.12972/pastj.20230001
10.12972/pastj.20230001Lim, J.W., Reza, M.N., Chung, S.O., Lee, K.Y., Lee, S.Y., Lee, K.N., Lee, B. 2023. Application of artificial neural network in smart protected horticulture: A review. Precision Agriculture Science and Technology 5(1): 30. https://doi.org/10.12972/pastj.20230003
10.12972/pastj.20230003Liu, Y., Xie, G., Tang, Y., Li, R. 2019. Improving real-time performance under reliability requirement assurance in automotive electronic systems. IEEE Access 7: 140875-140888. https://doi.org/10.1109/ACCESS.2019.2944204
10.1109/ACCESS.2019.2944204López-Ortiz, J.E., Hernández-Nolasco, J.A., Carrillo-Nuñez, H., García-Vázquez, J.P. 2020. LoRaWAN module power consumption evaluation in a smart campus context. Sensors 20(17): 4794.
Lu, Y., Liu, M., Li, C., Liu, X., Cao, C., Li, X., Kan, Z. 2022. Precision fertilization and irrigation: Progress and applications. AgriEngineering 4(3): 626-655. https://doi.org/10.3390/agriengineering4030041
10.3390/agriengineering4030041Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Madrigal, V.P., Mallinis, G., Dor, E.B., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M.I., de Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Toth, B. 2018. On the use of unmanned aerial systems for environmental monitoring. Remote Sensing 10(4): 641. https://doi.org/10.3390/rs10040641
10.3390/rs10040641Mehic, M., Duliman, M., Selimovic, N., Voznak, M. 2022. LoRaWAN end nodes: Security and energy efficiency analysis. Alexandria Engineering Journal 61(11): 8997-9009. https://doi.org/10.1016/j.aej.2022.02.035
10.1016/j.aej.2022.02.035Mowla, M.N., Mowla, N., Shah, A.F.M.S., Rabie, K.M., Shongwe, T. 2023. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 11: 145813-145852. https://doi.org/10.1109/ACCESS.2023.3346299
10.1109/ACCESS.2023.3346299Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A. 2012. Closing yield gaps through nutrient and water management. Nature 490(7419): 254-257. https://doi.org/10.1038/nature11420
10.1038/nature1142022932270Nadal, A., Llorach-Massana, P., Cuerva, E., López-Capel, E., Montero, J.I., Josa, A., Rieradevall, J., Royapoor, M. 2017. Building-integrated rooftop greenhouses: An energy and environmental assessment in the Mediterranean context. Applied Energy 187: 338-351. https://doi.org/10.1016/j.apenergy.2016.11.051
10.1016/j.apenergy.2016.11.051Navarro-Serrano, F., López-Moreno, J.I., Azorin-Molina, C., Buisán, S., Domínguez-Castro, F., Sanmiguel-Vallelado, A., Alonso-González, E., Khorchani, M. 2019. Air temperature measurements using autonomous self-recording dataloggers in mountainous and snow-covered areas. Atmospheric Research 224: 168-179. https://doi.org/10.1016/j.atmosres.2019.03.034
10.1016/j.atmosres.2019.03.034Park, J., Kim, J. 2021. An implementation design of unified protocol architecture for physical layer of LoRaWAN end-nodes. Electronics 10(20): 1-24. https://doi.org/10.3390/electronics10202550
10.3390/electronics10202550Parra-López, C., Ben Abdallah, S., Garcia-Garcia, G., Hassoun, A., Sánchez-Zamora, P., Trollman, H., Jagtap, S., Carmona-Torres, C. 2024. Integrating digital technologies in agriculture for climate change adaptation and mitigation: State of the art and future perspectives. Computers and Electronics in Agriculture 226: 107176. https://doi.org/10.1016/j.compag.2024.109412
10.1016/j.compag.2024.109412Parry, M.A.J., Reynolds, M., Salvucci, M.E., Raines, C., Andralojc, P.J., Zhu, X.G., Price, G.D., Condon, A.G., Furbank, R.T. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany 62(2): 453-467. https://doi.org/10.1093/jxb/erq304
10.1093/jxb/erq30421030385Ray, P.P., Skala, K. 2022. Internet of things aware secure dew computing architecture for distributed hotspot network: A conceptual study. Applied Sciences 12(18): 8963. https://doi.org/10.3390/app12188963
10.3390/app12188963Rayhana, R., Xiao, G., Liu, Z. 2020. Internet of Things empowered smart greenhouse farming. IEEE Journal of Radio Frequency Identification 4(3): 195-211. https://doi.org/10.1109/JRFID.2020.2984391
10.1109/JRFID.2020.2984391Renzone, G.D., Landi, E., Mugnaini, M., Parri, L., Peruzzi, G., Pozzebon, A. 2022. Assessment of LoRaWAN transmission systems under temperature and humidity, gas, and vibration aging effects within IoT contexts. IEEE Transactions on Instrumentation and Measurement 71: 1-11. https://doi.org/10.1109/TIM.2021.3137568
10.1109/TIM.2021.3137568Reza, M.N., Islam, M.N., Iqbal, M.Z., Kabir, M.S., Chowdhury, M., Gulandaz, M.A., Ali, M., Jang, M.K., Chung, S.O. 2023. Spatial, temporal, and vertical variability of ambient environmental conditions in Chinese solar greenhouses during winter. Applied Sciences 13(17): 9835. https://doi.org/10.3390/app13179835
10.3390/app13179835Ruan, Y., Li, J., Xiao, Q., Wu, Y., Shi, M. 2023. High-temperature failure evolution analysis of K-type film thermocouples. Micromachines 14(11): 2070. https://doi.org/10.3390/mi14112070
10.3390/mi1411207038004927PMC10672794Săcăleanu, D.I., Matache, M.G., Roșu, Ș.G., Florea, B.C., Manciu, I.P., Perișoară, L.A. 2024. IoT-enhanced decision support system for real-time greenhouse microclimate monitoring and control. Technologies 12(11): 230. https://doi.org/10.3390/technologies12110230
10.3390/technologies12110230Sachtleben, R., Peleska, J. 2022. Effective grey-box testing with partial FSM models. Software Testing Verification and Reliability 32(2): 1-27. https://doi.org/10.1002/stvr.1806
10.1002/stvr.1806Sadiqbatcha, S., Zhang, J., Amrouch, H., Tan, S.X.D. 2022. Real-time full-chip thermal tracking: A post-silicon, machine learning perspective. IEEE Transactions on Computers 71(6): 1411-1424.
Selvam, A.P. 2023. The impact of IoT and sensor integration on real-time weather monitoring systems: A systematic review. International Research Journal on Advanced Science Hub 5(11): 1-71. https://doi.org/10.21203/rs.3.rs-3579172/v1
10.21203/rs.3.rs-3579172/v1Shahab, H., Iqbal, M., Sohaib, A., Ullah Khan, F., Waqas, M. 2024. IoT-based agriculture management techniques for sustainable farming: A comprehensive review. Computers and Electronics in Agriculture 220: 108851. https://doi.org/10.1016/j.compag.2024.108851
10.1016/j.compag.2024.108851Shamshiri, R.R., Hameed, I.A., Thorp, K.R., Balasundram, S.K., Shafian, S., Fatemieh, M., Sultan, M., Mahns, B., Samiei, S. 2021. Greenhouse automation using wireless sensors and IoT instruments integrated with artificial intelligence. In Next-Generation Greenhouses for Food Security. pp. 1-22.
Sharma, K., Shivandu, S.K. 2024. Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International 5(August): 100292. https://doi.org/10.1016/j.sintl.2024.100292
10.1016/j.sintl.2024.100292Singh, R.K., Aernouts, M., De Meyer, M., Weyn, M., Berkvens, R. 2020. Leveraging LoRaWAN technology for precision agriculture in greenhouses. Sensors 20(7): 1827. https://doi.org/10.3390/s20071827
10.3390/s2007182732218353PMC7181210Singh, S. 2018. Agrometeorological requirements for sustainable vegetable crops production. Journal of Food Protection 2: 1-22.
Sun, A.Y., Scanlon, B.R. 2019. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environmental Research Letters 14(7). https://doi.org/10.1088/1748-9326/ab1b7d
10.1088/1748-9326/ab1b7dTamang, D., Pozzebon, A., Parri, L., Fort, A., Abrardo, A. 2022. Designing a reliable and low-latency LoRaWAN solution for environmental monitoring in factories at major accident risk. Sensors 22(6). https://doi.org/10.3390/s22062372
10.3390/s2206237235336543PMC8948738Tang, X., Yang, J., Duan, Z., Bu, Y., Yuan, Z., Jiang, Y., Tai, H. 2024. Advances in paper-based photodetectors: Fabrications, performances, and applications. Advanced Optical Materials 2401114: 1-22. https://doi.org/10.1002/adom.202401114
10.1002/adom.202401114Thaenkaew, P., Quoitin, B., Meddahi, A. 2023. Leveraging larger AES keys in LoRaWAN: A practical evaluation of energy and time costs. Sensors 23(22): 1-23. https://doi.org/10.3390/s23229172
10.3390/s2322917238005557PMC10674829Ukoba, K., Olatunji, K.O., Adeoye, E., Jen, T.C., Madyira, D.M. 2024. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy and Environment 35(7): 3833-3879. https://doi.org/10.1177/0958305X241256293
10.1177/0958305X241256293Valente, J., Costa, D., Ventura, R., Catarino, A.P. 2023. IoT-enhanced decision support system for real-time greenhouse monitoring. Technologies 12(11): 230. https://doi.org/10.3390/technologies12110230
10.3390/technologies12110230Wang, J., Fan, P.G. 2020. Research and implement of just-in-time dual buffer-queues in LoRaWAN gateways. 2020 IEEE 8th International Conference on Information, Communication and Networks, ICICN 2020. pp. 63-68. https://doi.org/10.1109/ICICN51133.2020.9205105
10.1109/ICICN51133.2020.9205105Wei, H., Xu, W., Kang, B., Eisner, R., Muleke, A., Rodriguez, D., deVoil, P., Sadras, V., Monjardino, M., Harrison, M.T. 2024. Irrigation with artificial intelligence: Problems, premises, promises. Human-Centric Intelligent Systems 4(2): 187-205. https://doi.org/10.1007/s44230-024-00072-4
10.1007/s44230-024-00072-4Xue, J., Shou, G., Liu, Y., Hu, Y. 2024. Scheduling time-critical traffic with virtual queues in software-defined time-sensitive networking. IEEE Transactions on Network and Service Management 21(1): 967-978. https://doi.org/10.1109/TNSM.2023.3287634
10.1109/TNSM.2023.3287634You, I., Kwon, S., Choudhary, G., Sharma, V., Seo, J.T. 2018. An enhanced LoRaWAN security protocol for privacy preservation in IoT with a case study on a smart factory-enabled parking system. Sensors 18(6): 1-32. https://doi.org/10.3390/s18061888
10.3390/s1806188829890704PMC6021832Zeng, K., Zheng, G., Ma, L., Ju, W., Pang, Y. 2019. Modeling three-dimensional spatiotemporal distributions of forest photosynthetically active radiation using UAV-Based lidar data. Remote Sensing 11(23): 2806. https://doi.org/10.3390/rs11232806
10.3390/rs11232806Zhang, C., Xu, K., Liu, K., Xu, J., Zheng, Z. 2022. Metal oxide resistive sensors for carbon dioxide detection. Coordination Chemistry Reviews 472: 214758. https://doi.org/10.1016/j.ccr.2022.214758
10.1016/j.ccr.2022.214758Zhao, G., Zhao, Q., Webber, H., Johnen, A., Rossi, V., Nogueira Junior, A.F. 2024. Integrating machine learning and change detection for enhanced crop disease forecasting in rice farming: A multi-regional study. European Journal of Agronomy 160: 127317. https://doi.org/10.1016/j.eja.2024.127317
10.1016/j.eja.2024.127317Zhao, N., Tan, Q., Dong, H., Pang, J., Wang, X., Zhang, J., Yao, X. 2021. Design and fabrication of thermocouple sensors based on a ceramic curved alumina substrate. IEEE Sensors Journal 21(18): 19780-19788. https://doi.org/10.1109/JSEN.2021.3095098
10.1109/JSEN.2021.3095098- Publisher :Korean Society of Precision Agriculture
- Publisher(Ko) :한국정밀농업학회
- Journal Title :Precision Agriculture Science and Technology
- Journal Title(Ko) :정밀농업과학기술
- Volume : 7
- No :1
- Pages :28-46
- Received Date : 2025-03-10
- Revised Date : 2025-03-31
- Accepted Date : 2025-03-31
- DOI :https://doi.org/10.22765/pastj.20250003